Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(15): e2310333, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38181178

RESUMEN

Mechanical constraints imposed on the Pd-H system can induce significant strain upon hydrogenation-induced expansion, potentially leading to changes in the thermodynamic behavior, such as the phase-transition pressure. However, the investigation of the constraint effect is often tricky due to the lack of simple experimental techniques for measuring hydrogenation-induced expansion. In this study, a capacitive-based measurement system is developed to monitor hydrogenation-induced areal expansion, which allows us to control and evaluate the magnitude of the substrate constraint. By using the measurement technique, the influence of substrate constraint intensity on the thermodynamic behavior of the Pd-H system is investigated. Through experiments with different constraint intensities, it is found that the diffefrence in the constraint intensity minimally affects the phase-transition pressure when the Pd-H system allows the release of constraint stress through plastic deformation. These experiments can improve the understanding of the substrate constraint behaviours of Pd-H systems allowing plastic deformation while demonstrating the potential of capacitive-based measurement systems to study the mechanical-thermodynamic coupling of M-H systems.

2.
Adv Mater ; 36(8): e2309041, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38041566

RESUMEN

Metal-organic frameworks (MOFs), which are highly ordered structures exhibiting sub-nanometer porosity, possess significant potential for diverse gas applications. However, their inherent insulative properties limit their utility in electrochemical gas sensing. This investigation successfully modifies the electrical conductivity of zeolitic imidazolte framework-8 (ZIF-8) employing a straightforward surface oxidation methodology. A ZIF-8 polycrystalline layer is applied on a wafer-scale oxide substrate and subjects to thermal annealing at 300 °C under ambient air conditions, resulting in nanoscale oxide layers while preserving the fundamental properties of the ZIF-8. Subsequent exposure to NO2 instigates the evolution of an electrically interconnected structure with the formation of electron-rich dopants derived from the decomposition of nitrogen-rich organic linkers. The N-carbon-hybridized ZnO/ZIF-8 device demonstrates remarkable sensitivity (≈130 ppm-1 ) and extreme selectivity in NO2 gas detection with a lower detection limit of 0.63 ppb under 150 °C operating temperature, surpassing the performance of existing sensing materials. The exceptional performances result from the Debye length scale dimensionality of ZnO and the high affinity of ZIF-8 to NO2 . The methodology for manipulating MOF conductivity through surface oxidation holds the potential to accelerate the development of MOF-hybridized conductive channels for a variety of electrical applications.

3.
ACS Nano ; 17(18): 17811-17825, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37639494

RESUMEN

Surfaces contaminated with pathogens raise concerns about the increased risk of disease transmission and infection. To clean biocontaminated surfaces, alcohol-based disinfectants have been predominantly used for disinfecting high-touch areas in diverse settings. However, due to its limited antimicrobial activities and concern over the emergence of alcohol-tolerant strains, much effort has been made to develop highly efficient disinfectant formulations. In this study, we hypothesize that the addition of a physical pathogen inactivation mechanism by salt recrystallization (besides the existing chemical inactivation mechanism by alcohol in such formulations) can improve inactivation efficiency by preventing the emergence of alcohol tolerance. To this end, we employed the drying-induced salt recrystallization process to implement the concept of highly efficient alcohol-based disinfectant formulations. To identify the individual and combined effects of isopropyl alcohol (IPA) and NaCl, time-dependent morphological/structural changes of various IPA solutions containing NaCl have been characterized by optical microscopy/X-ray diffraction analysis. Their antimicrobial activities have been tested on surfaces (glass slide, polystyrene Petri dish, and stainless steel) contaminated with Gram-positive/negative bacteria (methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella enterica subsp. enterica Typhimurium) and viruses (A/PR8/34 H1N1 influenza virus and HCoV-OC43 human coronavirus). We found that additional salt crystallization during the drying of the alcohol solution facilitated stronger biocidal effects than IPA-only formulations, regardless of the types of solid surfaces and pathogens, including alcohol-tolerant strains adapted from wild-type Escherichia coli MG1655. Our findings can be useful in developing highly effective disinfectant formulations by minimizing the use of toxic antimicrobial substances to improve public health and safety.


Asunto(s)
Antiinfecciosos , Desinfectantes , Subtipo H1N1 del Virus de la Influenza A , Staphylococcus aureus Resistente a Meticilina , Humanos , Desinfectantes/farmacología , Cloruro de Sodio/farmacología , Antiinfecciosos/farmacología , Etanol , 2-Propanol/farmacología , Escherichia coli
4.
Discov Nano ; 18(1): 47, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-37382702

RESUMEN

A high-performance gas sensor operating at room temperature is always favourable since it simplifies the device fabrication and lowers the operating power by eliminating a heater. Herein, we fabricated the ammonia (NH3) gas sensor by using Au nanoparticle-decorated TiO2 nanosheets, which were synthesized via two distinct processes: (1) preparation of monolayer TiO2 nanosheets through flux growth and a subsequent chemical exfoliation and (2) decoration of Au nanoparticles on the TiO2 nanosheets via hydrothermal method. Based on the morphological, compositional, crystallographic, and surface characteristics of this low-dimensional nano-heterostructured material, its temperature- and concentration-dependent NH3 gas-sensing properties were investigated. A high response of ~ 2.8 was obtained at room temperature under 20 ppm NH3 gas concentration by decorating Au nanoparticles onto the surface of TiO2 nanosheets, which generated oxygen defects and induced spillover effect as well.

5.
Dalton Trans ; 52(11): 3386-3390, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36811336

RESUMEN

The authors report a Br doping effect on the NO2 gas sensing properties of a two-dimensional (2D) SnSe2 semiconductor. Single crystalline 2D SnSe2 samples with different Br contents are grown by a simple melt-solidification method. By analyzing the structural, vibrational as well as electrical properties, it can be confirmed that the Br impurity substitutes on the Se-site in SnSe2 serving as an efficient electron donor. When we measure the change of resistance under a 20 ppm NO2 gas flow condition at room temperature, both responsivity and response time are drastically improved by Br doping from 1.02% and 23 s to 3.38% and 15 s, respectively. From these results, it can be concluded that Br doping plays a key role for encouraging the charge transfer efficiency from the SnSe2 surface to the NO2 molecule by elaborating Fermi level in 2D SnSe2.

6.
Phys Chem Chem Phys ; 25(5): 3942-3949, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36648288

RESUMEN

The decisive physical parameters on electrical conduction in a LaVO3 Mott-Hubbard system are systematically investigated by analyzing pure, Ca-, and Sr-doped samples. The Rietveld refinement of the X-ray diffraction data indicates that a drastic change occurs along the c-axis to reduce the octahedral tilt thereby relaxing the distortion for the doped compounds, in contrast to an insignificant change in the in-plane distortion. From electrical, optical, and photoemission measurements, both Ca and Sr-doping in LaVO3 induce insulator to metal transitions under a similar hole carrier concentration as suppressing the Mott-gap excitation. Fitting results on temperature-dependent resistivity based on various conduction models indicate that the most localized conduction behavior takes place for the highly distorted pure LaVO3, while disordered Fermi liquid behavior starts to appear for moderately distorted Ca-doped LaVO3. The least distorted Sr-doped LaVO3 exhibits fully delocalized conduction governed by a non-Fermi-liquid-like behavior in the whole temperature range. Our analysis indicates that the difference in the transport mechanism arises from the differing degree of hybridization of the V 3d and O 2p states in the pure and doped systems, strongly associated with the structural distortion.

7.
Adv Sci (Weinh) ; 10(2): e2204248, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36394076

RESUMEN

Engineering active sites of metal nanoparticle-based heterogeneous catalysts is one of the most prerequisite approaches for the efficient production of chemicals, but the limited active sites and undesired oxidation on the metal nanoparticles still remain as key challenges. Here, it is reported that the negatively charged surface of copper nanoparticles on the 2D [Ca2 N]+ ∙e- electride provides the unrestricted active sites for catalytic selective sulfenylation of indoles and azaindoles with diaryl disulfides. Substantial electron transfer from the electride support to copper nanoparticles via electronic metal-support interactions results in the accumulation of excess electrons at the surface of copper nanoparticles. Moreover, the surface-accumulated excess electrons prohibit the oxidation of copper nanoparticle, thereby maintaining the metallic surface in a negatively charged state and activating both (aza)indoles and disulfides under mild conditions in the absence of any further additives. This study defines the role of excess electrons on the nanoparticle-based heterogeneous catalyst that can be rationalized in versatile systems.

8.
Macromol Rapid Commun ; 43(20): e2200393, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35715386

RESUMEN

Covalent-organic frameworks (COFs) are a new class of porous crystalline frameworks with high π-conjugation and periodical skeletons. The highly ordered π-conjugation structures in some COFs allow exciton migration and energy transfer over the frameworks, which leads to good fluorescence probing ability. In this work, two COFs (TFHPB-TAPB-COF and TFHPB-TTA-COF) are successfully condensed via the Schiff base condensation reaction. The intramolecular hydrogen bonds between imine bonds and hydroxyl groups form the excited-state intramolecular proton transfer (ESIPT) strategy. Owing to intramolecular hydrogen bonds in the skeleton, the two COFs show high crystallinity, remarkable stability, and excellent luminescence. The COFs represent a good sensitivity and selectivity to fluoride anions via fluorescence turn-off. Other halogen anions (chloride, bromide, and iodine) and acid anions (nitrate and hydrogen carbonate) remain inactive. These results imply that only fluoride anion is capable of opening the hydrogen bond interaction and hence break the ESIPT strategy. The detection limit toward fluoride anion is down to nanomoles level, ranking the best performances among fluoride anion sensors systems.

9.
Adv Mater ; 34(33): e2200074, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35765199

RESUMEN

Layer-structured materials are of central importance in a wide range of research fields owing to their unique properties originating from their two dimensionality and anisotropy. Herein, quasi-2D layer-structured IMnV (I: alkali metals and V: pnictogen elements) compounds are investigated, which are potential antiferromagnetic (AFM) semiconductors. Single crystals of IMnV compounds are successfully grown using the self-flux method and their electronic and magnetic properties are analyzed in correlation with structural parameters. Combined with theoretical calculations, the structural analysis indicates that the variation in the bonding angle between VMnV is responsible for the change in the orbital hybridization of Mn and V, predominantly affecting their anisotropic semiconducting properties. Anisotropy in the magnetic properties is also found, where AFM ordering is expected to occur in the in-plane direction, as supported by spin-structure calculations. Furthermore, a possible ferromagnetic (FM) transition is discussed in relation to the vacancy defects. This study provides a candidate material group for AFM and FM spintronics and a basis for exploring magnetic semiconductors in quasi-2D layer-structured systems.

10.
Nature ; 603(7902): 631-636, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35322249

RESUMEN

Metastable phases-kinetically favoured structures-are ubiquitous in nature1,2. Rather than forming thermodynamically stable ground-state structures, crystals grown from high-energy precursors often initially adopt metastable structures depending on the initial conditions, such as temperature, pressure or crystal size1,3,4. As the crystals grow further, they typically undergo a series of transformations from metastable phases to lower-energy and ultimately energetically stable phases1,3,4. Metastable phases sometimes exhibit superior physicochemical properties and, hence, the discovery and synthesis of new metastable phases are promising avenues for innovations in materials science1,5. However, the search for metastable materials has mainly been heuristic, performed on the basis of experiences, intuition or even speculative predictions, namely 'rules of thumb'. This limitation necessitates the advent of a new paradigm to discover new metastable phases based on rational design. Such a design rule is embodied in the discovery of a metastable hexagonal close-packed (hcp) palladium hydride (PdHx) synthesized in a liquid cell transmission electron microscope. The metastable hcp structure is stabilized through a unique interplay between the precursor concentrations in the solution: a sufficient supply of hydrogen (H) favours the hcp structure on the subnanometre scale, and an insufficient supply of Pd inhibits further growth and subsequent transition towards the thermodynamically stable face-centred cubic structure. These findings provide thermodynamic insights into metastability engineering strategies that can be deployed to discover new metastable phases.

11.
Nat Nanotechnol ; 17(3): 285-291, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35145286

RESUMEN

Copper (Cu) nanoparticles (NPs) have received extensive interest owing to their advantageous properties compared with their bulk counterparts. Although the natural oxidation of Cu NPs can be alleviated by passivating the surfaces with additional moieties, obtaining non-oxidized bare Cu NPs in air remains challenging. Here we report that bare Cu NPs with surface excess electrons retain their non-oxidized state over several months in ambient air. Cu NPs grown on an electride support with excellent electron transfer ability are encapsulated by the surface-accumulated excess electrons, exhibiting an ultralow work function of ~3.2 eV. Atomic-scale structural and chemical analyses confirm the absence of Cu oxide moiety at the outermost surface of air-exposed bare Cu NPs. Theoretical energetics clarify that the surface-accumulated excess electrons suppress the oxygen adsorption and consequently prohibit the infiltration of oxygen into the Cu lattice, provoking the endothermic reaction for oxidation process. Our results will further stimulate the practical use of metal NPs in versatile applications.

12.
Adv Mater ; 33(47): e2005931, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33759235

RESUMEN

Thermoelectrics, which can generate electricity from a temperature difference, or vice versa, is a key technology for solid-state cooling and energy harvesting; however, its applications are constrained owing to low efficiency. Since the conversion efficiency of thermoelectric devices is directly obtained via a figure of merit of materials, zT, which is related to the electronic and thermal transport characteristics, the aim here is to elucidate physical parameters that should be considered to understand transport phenomena in semiconducting materials. It is found that the weighted mobility ratio of the majority and minority carrier bands is an important parameter that determines zT. For nanograined Bi-Sb-Te alloy, the unremarked role of this parameter on temperature-dependent electronic transport properties is demonstrated. This analysis shows that the control of the weighted mobility ratio is a promising way to enhance zT of narrow bandgap thermoelectric materials.

13.
ACS Appl Mater Interfaces ; 13(9): 11396-11402, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33480686

RESUMEN

Facile strategies in flexible transparent conductive electrode materials that can sustain their electrical conductivities under 1 mm-scale radius of curvature are required for wider applications such as foldable devices. We propose a rational design as well as a fabrication process for a silver nanowire-based transparent conductive electrode with low sheet resistance and high transmittance even after prolonged cyclic bending. The electrode is fabricated on a poly(ethylene terephthalate) film through the hybridization of silver nanowires with silver nanoparticles-anchored RuO2 nanosheets. This hybridization significantly improves the performance of the silver nanowire network under severe bending strain and creates an electrically percolative structure between silver nanowires and RuO2 nanosheets in the presence of anchored silver nanoparticles on the surface of RuO2 nanosheets. The resistance change of this hybrid transparent conductive electrode is 8.8% after 200,000 bending cycles at a curvature radius of 1 mm, making it feasible for use in foldable devices.

14.
Sci Adv ; 6(23): eaba7416, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32548272

RESUMEN

Electrides have emerged as promising materials with exotic properties, such as extraordinary electron-donating ability. However, the inevitable instability of electrides, which is caused by inherent excess electrons, has hampered their widespread applications. We report that a self-passivated dihafnium sulfide electride ([Hf2S]2+∙2e-) by double amorphous layers exhibits a strong oxidation resistance in water and acid solutions, enabling a persistent electrocatalytic hydrogen evolution reaction. The naturally formed amorphous Hf2S layer on the cleaved [Hf2S]2+∙2e- surface reacts with oxygen to form an outermost amorphous HfO2 layer with ~10-nm thickness, passivating the [Hf2S]2+∙2e- electride. The excess electrons in the [Hf2S]2+∙2e- electride are transferred through the thin HfO2 passivation layer to water molecules under applied electric fields, demonstrating the first electrocatalytic reaction with excellent long-term sustainability and no degradation in performance. This self-passivation mechanism in reactive conditions can advance the development of stable electrides for energy-efficient applications.

15.
Micromachines (Basel) ; 11(5)2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32443447

RESUMEN

We report on the effects of the intense pulsed light (IPL) rapid annealing process and back-channel passivation on the solution-processed In-Ga-Zn-O (IGZO) thin film transistors (TFTs) array. To improve the electrical properties, stability and uniformity of IGZO TFTs, the oxide channel layers were treated by IPL at atmospheric ambient and passivated by photo-sensitive polyimide (PSPI). When we treated the IGZO channel layer by the IPL rapid annealing process, saturation field effect mobility and subthreshold swing (S.S.) were improved. And, to protect the back-channel of oxide channel layers from oxygen and water molecules, we passivated TFT devices with photo-sensitive polyimide. The IGZO TFTs on glass substrate treated by IPL rapid annealing without PSPI passivation showed the field effect mobility (µFE) of 1.54 cm2/Vs and subthreshold swing (S.S.) of 0.708 V/decade. The PSPI-passivated IGZO TFTs showed higher µFE of 2.17 cm2/Vs than that of device without passivation process and improved S.S. of 0.225 V/decade. By using a simple and fast intense pulsed light treatment with an appropriate back-channel passivation layer, we could improve the electrical characteristics and hysteresis of IGZO-TFTs. We also showed the improved uniformity of electrical characteristics for IGZO TFT devices in the area of 10 × 40 mm2. Since this IPL rapid annealing process could be performed at a low temperature, it can be applied to flexible electronics on plastic substrates in the near future.

16.
Nat Commun ; 11(1): 2514, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32409673

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
Nat Commun ; 11(1): 1526, 2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-32251273

RESUMEN

An electride, a generalized form of cavity-trapped interstitial anionic electrons (IAEs) in a positively charged lattice framework, shows exotic properties according to the size and geometry of the cavities. Here, we report that the IAEs in layer structured [Gd2C]2+·2e- electride behave as ferromagnetic elements in two-dimensional interlayer space and possess their own magnetic moments of ~0.52 µB per quasi-atomic IAE, which facilitate the exchange interactions between interlayer gadolinium atoms across IAEs, inducing the ferromagnetism in [Gd2C]2+·2e- electride. The substitution of paramagnetic chlorine atoms for IAEs proves the magnetic nature of quasi-atomic IAEs through a transition from ferromagnetic [Gd2C]2+·2e- to antiferromagnetic Gd2CCl caused by attenuating interatomic exchange interactions, consistent with theoretical calculations. These results confirm that quasi-atomic IAEs act as ferromagnetic elements and trigger ferromagnetic spin alignments within the antiferromagnetic [Gd2C]2+ lattice framework. These results present a broad opportunity to tailor intriguing ferromagnetism originating from quasi-atomic interstitial electrons in low-dimensional materials.

18.
Sci Rep ; 10(1): 4093, 2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32139781

RESUMEN

Breakthrough process technologies have been introduced that can increase the chemical sensitivity of an interface at which reactions occur without significantly altering the physico-chemical properties of the material. Such an interfacial treatment method is based on amorphous-carbon as a base so that fluids can be deposited, and the desired thickness and quality of the deposition can be ensured irrespective of the interface state of the material. In addition, side effects such as diffusion and decreasing strength at the interface can be avoided. This is simpler than existing vacuum-based deposition technology and it has an unmatched industrial advantage in terms of economics, speed, accuracy, reliability, accessibility, and convenience. In particular, this amorphous-carbon interface treatment technology has been demonstrated to improve gas-sensing characteristics of NO2 at room temperature.

19.
Sci Rep ; 10(1): 346, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941987

RESUMEN

Theoretical advances in science are inherently time-consuming to realise in engineering, since their practical application is hindered by the inability to follow the theoretical essence. Herein, we propose a new method to freely control the time, cost, and process variables in the fabrication of a hybrid featuring Au nanoparticles on a pre-formed SnO2 nanostructure. The above advantages, which were divided into six categories, are proven to be superior to those achieved elsewhere, and the obtained results are found to be applicable to the synthesis and functionalisation of other nanostructures. Furthermore, the reduction of the time-gap between science and engineering is expected to promote the practical applications of numerous scientific theories.

20.
RSC Adv ; 10(41): 24663-24668, 2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35516194

RESUMEN

(Bi,Sb)2Se3 alloys are promising alternatives to commercial n-type Bi2(Te,Se)3 ingots for low-mid temperature thermoelectric power generation due to their high thermoelectric conversion efficiency at elevated temperatures. Herein, we report the enhanced high-temperature thermoelectric performance of the polycrystalline Cl-doped Bi2-x Sb x Se3 (x = 0.8, 1.0) bulks and their sustainable thermal stability. Significant role of Cl substitution, characterized to enhance the power factor and reduce the thermal conductivity synergetically, is clearly elucidated. Cl-doping at Se-site of both Bi1.2Sb0.8Se3 and BiSbSe3 results in a high power factor by carrier generation and Hall mobility improvement while maintaining converged electronic band valleys. Furthermore, point defect phonon scattering originated from mass fluctuations formed at Cl-substituted Se-sites reduces the lattice thermal conductivity. Most importantly, spark plasma sintered Cl-doped Bi2-x Sb x Se3 bulks are thermally stable up to 700 K, and show a reproducible maximum thermoelectric figure of merit, zT, of 0.68 at 700 K.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...